136 research outputs found

    Insights into invasion and restoration ecology : time to collaborate towards a holistic approach to tackle biological invasions

    Get PDF
    The aim of our study is to provide an integrated framework for the management of alien plant invasions, combining insights and experiences from the fields of invasion and restoration ecology to enable more effective management of invasive species. To determine linkages between the scientific outputs of the two disciplines we used an existing data base on restoration studies between 2000 and 2008 and did a bibliometric analysis. We identified the type of restoration applied, determined by the aim of the study, and conducted a content analysis on 208 selected studies with a link to biological invasions (invasion-restoration studies). We found a total of 1075 articles on ecosystem restoration, with only eight percent of the studies having the main objective to control alien invasions. The content analysis of 208 invasion-restoration studies showed that the majority of the studies focused on causes of degradation other than alien invasions. If invaders were referred to as the main driver of degradation, the prevalent cause for degradation was invaders outcompeting and replacing native species. Mechanical control of alien plant invasions was by far the most common control method used. Measures that went beyond the removal of alien plants were implemented in sixty-five percent of the studies. Although invasion control was not as common as other types of restoration, a closer look at the sub-group of invasion-restoration studies shows a clear link between restoration and invasion ecology. Concerns, as identified in the literature review, are firstly that restoration activities mostly focus on controlling the invader while other underlying causes for degradation are neglected, and secondly that the current approach of dealing with alien invasions lacks a combination of theoretical and practical aspects. We suggest that closer collaboration between invasion and restoration ecologists can help to improve the management of alien plant invasions. We conclude with a framework and a case study from Perth Western Australia integrating the two disciplines, with the aim of informing restoration practice

    Development of the responsiveness to child feeding cues scale

    Get PDF
    Parent-child feeding interactions during the first two years of life are thought to shape child appetite and obesity risk, but remain poorly studied. This research was designed to develop and assess the Responsiveness to Child Feeding Cues Scale (RCFCS), an observational measure of caregiver responsiveness to child feeding cues relevant to obesity. General responsiveness during feeding as well as maternal responsiveness to child hunger and fullness were rated during mid-morning feeding occasions by 3 trained coders using digitally-recordings. Initial inter-rater reliability and criterion validity were evaluated in a sample of 144 ethnically-diverse mothers of healthy 7- to 24-month-old children. Maternal self-report of demographics and measurements of maternal/child anthropometrics were obtained. Inter-rater agreement for most variables was excellent (ICC>0.80). Mothers tended to be more responsive to child hunger than fullness cues (p<0.001). Feeding responsiveness dimensions were associated with demographics, including maternal education, maternal body mass index, and child age, and aspects of feeding, including breastfeeding duration, and self-feeding. The RCFCS is a reliable observational measure of responsive feeding for children <2 years of age that is relevant to obesity in early development

    Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3

    Full text link
    Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in total conductivity. In this letter, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological surface states. Appropriate surface passivation or encapsulation may be required to probe topological surface states of Bi2Se3 by transport measurements

    Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3

    Full text link
    Topological insulators represent a new state of quantum matter attractive to both fundamental physics and technological applications such as spintronics and quantum information processing. In a topological insulator, the bulk energy gap is traversed by spin-momentum locked surface states forming an odd number of surface bands that possesses unique electronic properties. However, transport measurements have often been dominated by residual bulk carriers from crystal defects or environmental doping which mask the topological surface contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological insulator system to manipulate bulk conductivity by varying the Bi/Sb composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as topological insulators for the entire composition range by angle resolved photoemission spectroscopy (ARPES) measurements and ab initio calculations. Additionally, we observe a clear ambipolar gating effect similar to that observed in graphene using nanoplates of (BixSb1-x)2Te3 in field-effect-transistor (FET) devices. The manipulation of carrier type and concentration in topological insulator nanostructures demonstrated in this study paves the way for implementation of topological insulators in nanoelectronics and spintronics.Comment: 7 pages, 4 figure

    The Atacama Cosmology Telescope: Data Characterization and Map Making

    Get PDF
    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps, as well as analysis from simulations, reveal that our maps are unbiased at multipoles ell > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape

    The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Get PDF
    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α5−20=−0.07±0.06\alpha_{\rm 5-20} = -0.07 \pm 0.06, α20−148=−0.39±0.04\alpha_{\rm 20-148} = -0.39 \pm0.04, and α5−148=−0.20±0.03\alpha_{\rm 5-148} = -0.20 \pm 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2.Comment: Accepted to Ap

    The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data

    Get PDF
    We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +\- 1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be Neff=2.79 +\- 0.56, in agreement with the canonical value of Neff=3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Sigma m_nu < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Yp = 0.225 +\- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha0 = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, dns/dlnk = -0.004 +\- 0.012.Comment: 26 pages, 22 figures. This paper is a companion to Das et al. (2013) and Dunkley et al. (2013). Matches published JCAP versio

    The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey

    Full text link
    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to Hajian et al. (2010) and Dunkley et al. (2010

    The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey

    Full text link
    We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass comparison for the eleven best detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.Comment: 13 pages, 7 figures, Accepted for publication in Ap
    • …
    corecore